

Chry Medium (Guillard and Selvin in Andersen et al. 1991)

Chry medium was developed to improve the growth of *Chrysochromulina*, however, the CCMP no longer uses this medium. It is a reduced salinity medium (ca. 24-28 psu) enriched with soil water extract, inorganic nutrients and vitamins.

Mix 750 mL of filtered seawater with 250 dH₂O; autoclave in a Teflon-lined bottle. After cooling, aseptically add:

Quantity	Compound	Stock Solution	Molar Concentration in Final Medium
100 µL	NaNO ₃	75 g/L dH2O	8.83 x 10 ⁻⁵ M
100 µL	NaH2PO4 • H2O	5 g/L dH20	3.63 x 10⁻⁰ M
1 mL	NH₄Cl	2.68 g/L dH ₂ O	5 x 10 ⁻⁵ M
1 mL	Urea	6 g/L dH20	1 x 10 ⁻⁴ M
1 mL	H ₂ SeO ₃	1.29 mg/L dH ₂ O	1 x 10 ⁻⁸ M
100 µL	f/2 trace metal solution	(see recipe below)	-
0.5 mL	f/2 vitamin solution	(see recipe below)	-
1 mL	Alkaline soil extract	(see recipe below)	-

f/2 Trace Metal Solution (Guillard & Ryther 1962, Guillard 1975)

To 950 mL distilled H₂O add:

Quantity	Compound	Stock Solution	Molar Concentration in Final Medium
3.15 g	FeCl₃ ● 6H₂O	-	1 x 10 ⁻⁵ M
4.36 g	Na ₂ EDTA • 2H ₂ O	-	1 x 10 ⁻⁵ M
1 mL	CuSO ₄ • 5H ₂ O	9.8 g/L dH ₂ O	4 x 10 ⁻⁸ M
1 mL	Na2MoO4 • 2H2O	6.3 g/L dH ₂ O	3 x 10 ⁻⁸ M
1 mL	ZnSO4 • 7H2O	22 g/L dH ₂ O	8 x 10 ⁻⁸ M
1 mL	CoCl ₂ • 6H ₂ O	10 g/L dH20	5 x 10 ⁻⁸ M
1 mL	MnCl ₂ • 4H ₂ O	180 g/L dH₂O	9 x 10⁻7 M

Make final volume up to 1 L with dH₂O. Autoclave.

f/2 Vitamin Solution (Guillard & Ryther 1962, Guillard 1975)

To 950 mL dH_2O add:

Quantity	Compound	Stock Solution	Molar Concentration in Final Medium
1 mL	Vitamin B12 (cyanocobalamin)	1 g/L dH₂O	1 x 10 ⁻¹⁰ M
10 mL	Biotin	0.1 g/L dH2O	2 x 10 ⁻⁹ M
200 mg	Thiamine • HCl	-	3 x 10 ⁻⁷ M

Make final volume up to 1 L with dH₂O. Autoclave and store in refrigerator. **Note**: Vitamin B₁₂ and biotin are obtained in a crystalline form. When preparing the vitamin B₁₂ stock solution, allow for approximately 11% water of crystallization (for each 1.0 mg of Vitamin B₁₂, add 0.89 mL dH₂O). When preparing the biotin stock solution, allow

for approximately 4% water of crystallization (for each 1.0 mg of biotin, add 9.6 mL dH₂0).

Alkaline Soil Extract (Provasoli *et al.* 1957)

Into a flask, add two parts by volume distilled water (dH₂O) to one part rich organic garden soil (containing no recent applications of chemical fertilizer or pesticides). Add 2-3 g NaOH/liter. Autoclave for 2 hours and filter when cool. This concentrated extract is then diluted 50:1 with dH₂O to make the final working stock.

References

Andersen, R.A., Jacobson, D.J., and Sexton, J.P. 1991. *Provasoli-Guillard Center for Culture of Marine Phytoplankton. Catalog of Strains*.published by Provasoli-Guillard Center for Culture of Marine Phytoplankton, West Boothbay Harbor, ME. 98 pp.

Guillard R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. pp 26-60. In Smith, W.L. and Chanley, M.H (eds.) *Culture of Marine Invertebrate Animals*. Plenum Press, New York, USA.

Guillard, R.R.L. and Ryther, J.H. 1962. Studies of marine planktonic diatoms. I. *Cyclotella nana* Hustedt and Detonula confervacea Cleve. **Can. J. Microbiol.** 8: 229-239.

Provasoli, L., McLaughlin, J.J.A., and Droop, M.R. 1957. The development of artificial media for marine algae. **Arch. Mikrobiol.** 25: 392-428.